

Geographic Information System (GIS) Mapping of Injury

Wendy J Pomerantz, MD, MS

Division of Emergency Medicine, Cincinnati Children's Hospital, Cincinnati, OH

Disclosure

 I have no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this CME activity

Objectives

- What is GIS?
- Why apply GIS to injury control?
- GIS for injury control
- GIS: Important considerations
- Practical applications

What is GIS?

- An information system designed to allow visualization of spatial or geographical data
- Part of surveillance: the ongoing systematic collection, analysis, interpretation, and dissemination of health data
 - Monitor health events/detect trends
 - Allows for better decision making and setting priorities
 - Assist in storytelling and improved communication
 - Plan and implement programs
 - Evaluate programs

Why a Map??

A domesticated canine mammal related to foxes and wolves

Injury Rates by Jurisdiction

JURISDICT	COUNT	TOTPOP	injrate
ADDYSTON	11	342	1072.1
AMBERLY VILLAGE	6	485	412.4
ANDERSON TWP	62	9996	230.1
ARLINGTON			
HEIGHTS	9	229	1310.0
BLUE ASH	20	2424	275.0
CHEVIOT	25	1939	429.8
CITY OF			
CINCINNATI	1398	78972	590.1
CLEVES	10	532	626.6
COLERAIN TWP	111	13647	271.1
COLUMBIA TWP	11	902	406.5
CROSBY TWP	4	681	195.8
DEER PARK	12	1091	366.6
DELHI TWP	61	7393	275.0
ELMWOOD PLACE	11	759	483.1
EVENDALE	8	808	330.0
FAIRFAX	6	410	487.8
FOREST PARK	33	4381	251.1
GLENDALE	9	436	688.1
GOLF MANOR	10	888	375.4
GREEN TWP	110	11116	329.9
GREENHILLS	8	1006	265.1
HARRISON	4	2178	61.2
HARRISON TWP	1	1124	29.7
INDIAN HILL	6	1081	185.0

LINCOLN HEIGHTS	23	1363	562.5
LOCKLAND	16	956	557.9
LOVELAND	8	2218	120.2
MADEIRA	19	2150	294.6
MARIEMONT	4	539	247.4
MIAMI TWP	19	1920	329.9
MILFORD	0	0	0.0
MONTGOMERY	11	2051	178.8
MOUNT HEALTHY	19	1609	393.6
NEWTOWN	3	352	284.1
NORTH BEND	1	144	231.5
NORTH COLLEGE			
HILL	29	2327	415.4
NORWOOD	89	5124	579.0
READING	24	2273	352.0
SAINT BERNARD	10	1089	306.1
SHARONVILLE	18	2033	295.1
SILVERTON	10	967	344.7
SPRINGDALE	17	1996	283.9
SPRINGFIELD TWP	75	8733	286.3
SYCAMORE TWP	31	3673	281.3
SYMMES TWP	20	3129	213.1
TERRACE PARK	3	557	179.5
WHITEWATER TWP	12	1193	335.3
WOODLAWN	3	494	202.4
WYOMING	19	1670	379.2

Injury Map

Why apply GIS to Injury Control?

- Planning for community-based programs
- Evaluation of programs
- Inspiring community members
- Motivating public leaders
- Allows ability to engage stakeholders

GIS for Injury Control

- What do you want to track?
- What are your data sources?
- How will you acquire the data?
- How will you assure data quality?
- How will you protect confidentiality?
- How will you analyze the data?
- How will you disseminate the data to stakeholders?

GIS: Important Considerations

- Standard case definitions
- Location: place of injury versus residence
- Geographic unit of analysis
 - Zip codes? Block groups? Census tracts?
- Numerator issues
 - Serious injuries are statistically rare
- Denominator issues
 - Population density matters!

Why Incidence Rates?

injuries population incidence rate

100,000 **Buckeye City** 100 100 per 100,000

500,000 50 per 100,000 Wolverine Town 250

Is your GIS Useful? Can it:

- Provide estimates of injury?
- Detect trends?
- Identify risk factors/markers for injury?
- Increase awareness of injury importance?
- Stimulate collaboration?
- Stimulate research?
- Evaluate effectivenss of programs?

Practical Applications of GIS

- CAGIS
- Hamilton County Injury Surveillance System (HCISS)
- Children's Hospital data
- Place of Injury vs. address
- Program planning
- Picking an intervention area
- Limitations

Cincinnati Area Geographic **Information Systems--CAGIS**

- Hamilton County
- Background maps
 - Census tracts
 - Townships
 - Zip codes
 - Streets
 - Addresses
 - Etc.

Hamilton County Census Tracts

Hamilton County Townships

Hamilton County Zip Codes

Cincinnati Neighborhoods

Hamilton County Streets

Etc.

Hamilton County Injury Surveillance System--HCISS

- County-wide injury surveillance system
- Begun in 1996
- Data from all hospitals in county
- Data includes: name, address, age, gender, race, injury mechanism, intent, outcome
- Calculate injury rates

Hamilton County Injuries & Deaths

Hamilton County Deaths

Map 1. Injury Death Rates, by Political Jurisdiction— Hamilton County, Ohio, 1997-2000

Hamilton County Injury Hospitalizations

Map 2. Injury Hospitalization Rates, by Political Jurisdiction-Hamilton County, Ohio, 2000

Hamilton County ED Injury Visits

Map 3. Injury Emergency Department Visit Rates, by Political Jurisdiction— Hamilton County, Ohio, 2000

HCISS

- Identify high-risk populations
- Identify injury trends
- Evaluate prevention efforts
- Examine geographical and socioeconomic variations in injuries
- Provides data for analytic studies
- Visual representation of numerical data

HCISS

- Other advantages
 - Population-based
 - Someone else does geocoding
- Disadvantages
 - Limited data available
 - Validity of data unclear
 - Someone else controls data

Cincinnati Children's Trauma Registry

- Hospital Trauma Registry
- Population-based for hospitalized kids <15 y.o.
- Not population-based for >15 y.o., ED visits, or deaths

Cincinnati Children's Trauma Registry

- Advantages
 - I control the data
 - More comprehensive data available
 - Good quality, valid data
 - More timely data
- Disadvantages
 - I do geocoding (80% first-time hits)
 - Not population based

Injuries to Kids in Hamilton County, Ohio

Injury Rates by Census Tract to Children in Hamilton County

Inpatient Playground Injuries

What are we going to map? Place of Injury vs. Residence

- Place of Injury
 - Exactly where injuries are occurring
 - Target high risk areas
- Residence
 - Can examine socioeconomic indicators with home addresses
 - Target high-risk groups

Program Planning

- Mapping by injury mechanism
- Target specific injuries in specific places
- Target areas at high risk for all types of injuries

Bike Injuries in Ohio

Picking an Intervention Area

- Where are most injuries occurring?
- What type of injuries are most common?
- Where are the most common types of injuries occurring?
- Can we find similar areas to compare interventions?

Sports Injuries in Hamilton County

Practical Examples of Limitations

- Address mapping
 - Need to be entered into database correctly
 - Need to exist
 - Need to be able to map
- Ecological fallacy
 - Examines small areas
 - May not apply to individuals
- Can only report aggregate data
 - Be careful with maps
 - Remove patient identifiers

Summary

- GIS can be used to enhance injury prevention and control activities
- It provides a visual representation of data
- It can be used to detect trends in injuries
- It can be used for planning implementation and evaluation

Summary

- GIS can be used to enhance injury prevention and control activities
- It provides a visual representation of data
- It can be used to detect trends in injuries
- It can be used for planning implementation and evaluation
- Maps are cool!

Questions?

